← 返回目录


针对学习数学证明的刻意练习

钻研人类记忆,探索复习算法。改善教育公平,践行自由学习。

32 👍 / 1 💬

针对数学的刻意练习是什么样的?我具体指的是,自学本科和研究生阶段以证明为主的数学知识。(所以我不考虑高中之前更早阶段的数学,大学中证明成分较少的微积分和线性代数,数学竞赛,以及数学研究。我对数学研究很感兴趣,但这个问题似乎更难讨论。为什么不考虑数学竞赛?因为那些题目对我来说挺无聊的。)

对刻意练习的认知:Ericsson 的研究可信吗?值得我们信任吗?我认为:我们不一定要信他,但他的研究对错与否也没什么关系。我看中的是这个研究是否足够合理,我能否从这个研究中学到新东西。当将其应用到学习之后,我们可以问:「利用刻意练习的理论,我们是否在某个技能上突飞猛进?」换句话说,我们不是把他的研究作为一个必须坚持的结论或信念,而是当作需要斟酌的假说。

数学是「高度发展的领域」吗?

Ericsson 在《刻意练习》一书中,以及 Cedric Chin [1] 都声称,数学是非常适合刻意练习的领域。但我怎么看不出来呢?我看到书里的例子都是网球、记忆数字、音乐之类。

我翻遍了《刻意练习》整本书,里面确实有一些关于数学家及其特质的讨论,但整本书都没有涉及学习数学的具体技巧,也没有描述数学家会做什么样的「刻意练习」。

在数学中应用刻意练习的困难之处

可以参考 commoncog.com/blog/the- 中关于「在缺乏成熟训练方法的领域中,练习会遇到哪些问题?」的讨论。

我觉得数学有「定义不良的子技能」这个问题。在本科数学中,我们很难明确界定具体包含哪些技能。理解证明的能力?解决问题的能力?我觉得这些技能作为技能分类太过宽泛了。也许可以细分为「解决特定类型问题的能力」。然而教科书上的练习并没有标注练习的各项属性,因此我们很难有针对性地选择题目来提高特定技能。

本科水平的证明题太长了,你没办法进行「达到 95% 的准确度」之类的练习——你无法在短时间内完成足够多的练习来达到这个标准。

Kathy Sierra 在 Badass: Making Users Awesome 这本书中用一系列插图来指导如何拆解技能(特别是最后一张图)。所以对于证明题,我觉得可以这样做来实现刻意练习的(也是经常做的),那就是放松一些假设条件,让问题更简单,或者证明一个特例。不过已经有人这样做了。另一种简化方法是先看一眼解答,然后尝试自己解决。这两种方法都是常见的学习技巧。

「缺乏反馈」——这是自学数学时面临的另一个重要挑战。获取反馈的唯一办法,是查看答案,或者在数学 Stack Overflow 上发帖求助。针对特定书目/领域的 Discord 服务器可能解决这个问题,但反馈会很慢。这跟如果概念的现有解释质量低下,费曼学习法起不了作用[1]一样(如果现存的解释质量很糟糕,你甚至不能使用费曼技巧来获取假反馈)。

但我们也有 Anki 这样的工具。

在某种程度上,随着数学水平的提高,学习者确实能够逐渐培养出自我反馈能力,例如判断数学推导是否正确。但是我觉得这样的反馈仍然不同于刻意练习讨论的那种。

我觉得可以设计一些能够提供良好反馈的多选题。你可以设定「在这道多选题上达到 95% 的正确率」之类的目标。

刻意练习定义的组成成分

lesswrong.com/tag/delib

让我们看看可以刻意练习的要求有哪些:

「这就是在任何领域中提升自己的基本方法:尽可能地接近刻意练习。如果你所处的领域可以实现刻意练习,那你就要做刻意练习。如果实现不了,那就要尽可能应用刻意练习的原则。这通常可以归结为一种带有额外步骤的有目的练习:首先,找出表现卓越的专家;然后,弄清楚是什么让他们如此出色;最后,设计能让你也做到这一点的训练方法。」[1]——从某种意义上说,「尝试证明一个定理,遇到困难,翻书寻找提示,然后找出你缺少的洞察力或者策略,并将其记录在 Anki 里」,这种方法正是这个原则在数学学习中的具体体现。

另外值得一提的是,刻意练习常常被视为防止技能停滞不前的一种方式;但在数学学习中,你其实不用太担心技能停滞的问题!只要你在不断学习新的数学知识,解决以前没有遇到过的问题,并且没有忘得太快(间隔重复在这方面非常有帮助),你就可以确信自己一直在进步。

目标

有一件事要弄明白,那就是为什么我们要「提高数学能力」?我们的最终目标究竟是什么?根据不同的目标,我认为我们应该采取的学习和练习方法也会有所不同。

与竞技象棋或游泳等领域不同,数学学习并没有一个明确的、单一的优化目标(尽管即使在游泳这样的运动中,你也可以追求速度以外的其他目标)。因此,在数学学习中,我们必须首先明确自己的学习目标。

关于我个人的数学学习方式,有一点似乎与常规不同:当我学完一个主题后,我通常不会刻意通过大量练习题来「进一步提高」。但也许我应该这样做?我的自然倾向是转向其他引起我好奇心的新主题。只有当某些情况提醒我时,比如遇到一个具体的问题或困难,我才会回头复习之前的主题。

另一个难点是理解什么是「所期待」的掌握程度,比如说,对于任意一个重大定理,只要听见名字,就能坐下来默写一遍证明,应该达到这样的水平吗?还是说,如果一个人在证明过程中遇到困难,但最终通过几个小时的努力(依靠记忆和一般的解题经验)成功完成证明,这样也可以接受?学界对于一个数学家应该掌握哪些知识并没有明确的标准

我的一些目标:

参见

参考

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Peak: secrets from the new science of expertise. Anders Ericsson, Robert Pool.

外部链接

一些链接(我觉得这些链接没啥用,但我也只能找到这么多了)

链接到本文


Thoughts Memo 汉化组译制
感谢主要译者 Shom,校对 Jarrett Ye
原文:Deliberate practice for learning proof-based math

参考

1. 如果概念的现有解释质量低下,费曼学习法起不了作用 ./603404706.html
2. 间隔证明复习 ./554633227.html

专栏:Issawiki


← 返回目录