← 返回目录


如何在数学中进行刻意练习?

学校≠教育≠技能;文凭溢价=80%信号传递+20%人力资本

82 👍 / 10 💬

问题描述

从小学到大学学了十几年数学,感觉都是看别人解题然后记得解题套路这样一路走过来的。可是我认为数学并不是像英语那样只需要积累和模仿就可以很优秀,数学最重要的还是学会方法和思想继而运用解决新的问题中去。如果每见到一个新问题都能靠着去看前人的套路来解决并不能称为一个好的数学学习者。所以想请教各路大神:想成为好的数学学习者应该怎么做?如果需要刻意练习具体应该怎么去练习?


针对学习数学证明的刻意练习

针对数学的刻意练习是什么样的?我具体指的是,自学本科和研究生阶段以证明为主的数学知识。(所以我不考虑高中之前更早阶段的数学,大学中证明成分较少的微积分和线性代数,数学竞赛,以及数学研究。我对数学研究很感兴趣,但这个问题似乎更难讨论。为什么不考虑数学竞赛?因为那些题目对我来说挺无聊的。)

对刻意练习的认知:Ericsson 的研究可信吗?值得我们信任吗?我认为:我们不一定要信他,但他的研究对错与否也没什么关系。我看中的是这个研究是否足够合理,我能否从这个研究中学到新东西。当将其应用到学习之后,我们可以问:「利用刻意练习的理论,我们是否在某个技能上突飞猛进?」换句话说,我们不是把他的研究作为一个必须坚持的结论或信念,而是当作需要斟酌的假说。

数学是「高度发展的领域」吗?

Ericsson 在《刻意练习》一书中,以及 Cedric Chin [1] 都声称,数学是非常适合刻意练习的领域。但我怎么看不出来呢?我看到书里的例子都是网球、记忆数字、音乐之类。

我翻遍了《刻意练习》整本书,里面确实有一些关于数学家及其特质的讨论,但整本书都没有涉及学习数学的具体技巧,也没有描述数学家会做什么样的「刻意练习」。

在数学中应用刻意练习的困难之处

可以参考 commoncog.com/blog/the- 中关于「在缺乏成熟训练方法的领域中,练习会遇到哪些问题?」的讨论。

我觉得数学有「定义不良的子技能」这个问题。在本科数学中,我们很难明确界定具体包含哪些技能。理解证明的能力?解决问题的能力?我觉得这些技能作为技能分类太过宽泛了。也许可以细分为「解决特定类型问题的能力」。然而教科书上的练习并没有标注练习的各项属性,因此我们很难有针对性地选择题目来提高特定技能。

本科水平的证明题太长了,你没办法进行「达到 95% 的准确度」之类的练习——你无法在短时间内完成足够多的练习来达到这个标准。

Kathy Sierra 在 Badass: Making Users Awesome 这本书中用一系列插图来指导如何拆解技能(特别是最后一张图)。所以对于证明题,我觉得可以这样做来实现刻意练习的(也是经常做的),那就是放松一些假设条件,让问题更简单,或者证明一个特例。不过已经有人这样做了。另一种简化方法是先看一眼解答,然后尝试自己解决。这两种方法都是常见的学习技巧。

「缺乏反馈」——这是自学数学时面临的另一个重要挑战。获取反馈的唯一办法,是查看答案,或者在数学 Stack Overflow 上发帖求助。针对特定书目/领域的 Discord 服务器可能解决这个问题,但反馈会很慢。这跟如果概念的现有解释质量低下,费曼学习法起不了作用[1]一样(如果现存的解释质量很糟糕,你甚至不能使用费曼技巧来获取假反馈)。

但我们也有 Anki 这样的工具。

在某种程度上,随着数学水平的提高,学习者确实能够逐渐培养出自我反馈能力,例如判断数学推导是否正确。但是我觉得这样的反馈仍然不同于刻意练习讨论的那种。

我觉得可以设计一些能够提供良好反馈的多选题。你可以设定「在这道多选题上达到 95% 的正确率」之类的目标。

刻意练习定义的组成成分

lesswrong.com/tag/delib

让我们看看可以刻意练习的要求有哪些:

「这就是在任何领域中提升自己的基本方法:尽可能地接近刻意练习。如果你所处的领域可以实现刻意练习,那你就要做刻意练习。如果实现不了,那就要尽可能应用刻意练习的原则。这通常可以归结为一种带有额外步骤的有目的练习:首先,找出表现卓越的专家;然后,弄清楚是什么让他们如此出色;最后,设计能让你也做到这一点的训练方法。」[1]——从某种意义上说,「尝试证明一个定理,遇到困难,翻书寻找提示,然后找出你缺少的洞察力或者策略,并将其记录在 Anki 里」,这种方法正是这个原则在数学学习中的具体体现。

另外值得一提的是,刻意练习常常被视为防止技能停滞不前的一种方式;但在数学学习中,你其实不用太担心技能停滞的问题!只要你在不断学习新的数学知识,解决以前没有遇到过的问题,并且没有忘得太快(间隔重复在这方面非常有帮助),你就可以确信自己一直在进步。

目标

有一件事要弄明白,那就是为什么我们要「提高数学能力」?我们的最终目标究竟是什么?根据不同的目标,我认为我们应该采取的学习和练习方法也会有所不同。

与竞技象棋或游泳等领域不同,数学学习并没有一个明确的、单一的优化目标(尽管即使在游泳这样的运动中,你也可以追求速度以外的其他目标)。因此,在数学学习中,我们必须首先明确自己的学习目标。

关于我个人的数学学习方式,有一点似乎与常规不同:当我学完一个主题后,我通常不会刻意通过大量练习题来「进一步提高」。但也许我应该这样做?我的自然倾向是转向其他引起我好奇心的新主题。只有当某些情况提醒我时,比如遇到一个具体的问题或困难,我才会回头复习之前的主题。

另一个难点是理解什么是「所期待」的掌握程度,比如说,对于任意一个重大定理,只要听见名字,就能坐下来默写一遍证明,应该达到这样的水平吗?还是说,如果一个人在证明过程中遇到困难,但最终通过几个小时的努力(依靠记忆和一般的解题经验)成功完成证明,这样也可以接受?学界对于一个数学家应该掌握哪些知识并没有明确的标准

我的一些目标:

参见

参考

  1. 1.01.11.21.31.41.51.6 Peak: secrets from the new science of expertise. Anders Ericsson, Robert Pool.

外部链接

一些链接(我觉得这些链接没啥用,但我也只能找到这么多了)


Thoughts Memo 汉化组译制
感谢主要译者 Shom,校对 Jarrett Ye
原文:Deliberate practice for learning proof-based math

相关文章

Thoughts Memo:用间隔重复系统来看穿数学概念Thoughts Memo:我重塑大脑,使其精通数学叶峻峣:规律记忆练习的承载能力;刻意练习和心流之间的张力叶峻峣:刻意练习,来自 Ericsson


参考

1. 如果概念的现有解释质量低下,费曼学习法起不了作用 ./603404706.html
2. 间隔证明复习 ./554633227.html

← 返回目录